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Abstract—Ultrasonic wave propagation in a composite consisting of spherical glass inclusions distributed in
a random homogeneous manner in an epoxy matrix has been studied in the frequency range of 0.3-5 MHz.
The longitudinal and shear phase velocities, and the attenuation of longitudinal waves in the composite
were determined as functions of frequency and the volume fraction of the inclusions.

The results are compared with several theoretical analyses available in the literature. It is shown that the
results of Datta are in very good agreement with the experimental observations. Further, the data satisfy
the bounds due to Hashin and Shtrikman, and due to Miller. The phenomenon of cut-off frequencies—a
characteristic of periodic composites—is not observed in the random particulate composities.

1. INTRODUCTION

Considerable advances have been made in the technology of composite materials in rec :nt
years. These composites may be broadly classified into three categories: Plate, Fibrous .nd
Particulate composites. The first two have received considerable attention in the past; however,
it is only recently that the particulate composites—consisting of particles of one material
dispersed in the matrix of a second—have begun to receive attention. Although some theoreti-
cal works dealing with random particulate composites have appeared in the literature, no
experimental work in this area has been reported.

Among the theoretical analyses of wave propagation in random particulate composites may
be mentioned the works of Datta[1,2] and Mal and Bose[4]. Datta [1, 2] treated the problem of
plane longitudinal and shear wave propagation in a composite made of aligned elastic ellipsoids
in welded contact with an elastic matrix. Mal and Bose[4], on the other hand, presented the
solution for the case of spherical particles in viscous contact with the matrix. Because of the
complexity of the problem, several simplifying assumptions were made in[1-4]. They are:

(1) It was assumed that the distribution of the inclusions was homogeneous and uncor-
related.

(2) Lax’s “quasi-crystalline approximation’ was used. This approximation is based on the
assumption that,

(i) = (),

where (i;); is the ensemble average of a field quantity at the jth scatterer position keeping the
ith and jth scatterers fixed in position.

(3) It was further assumed that an effective plane wave moves through the medium with a
characteristic wave speed, namely, “‘the effective wave speed.”

Even with these simplifying assumptions, the problem of ellipsoidal inclusions is algebraic-
ally rather complicated. For this reason, a further simplifying assumption was made in{1, 3]; the
effective field as seen by the ith scatterer is a plane wave moving at the effective wave speed in
the composite. This resulted in relatively simpler expressions for the two effective wave speeds.
However, it should be mentioned that this assumption is reasonable only for low concentrations
of the inclusions, as will be seen when the results are compared with the experiments. The final
results of [1,2] are reproduced in Appendix 1, together with their limiting forms for the
spherical inclusions. It may be noted that the results presented in [4] for viscous contact can be
specialized to give those for the welded contact and these agree with the results of [2]. The
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expressions for static effective elastic modulii derived by Chen and Acrivos[8] are also
reproduced in Appendix 1.

This paper is concerned with an experimental investigation of wave propagation in random
particulate composites with a view to assessing the range of validity of the theoretically
produced results. The composite used here consists of spheres of glass dispersed in a random
homogeneous manner in an epoxy. The longitudinal and the shear wave phase velocities, {c;)
and {c,) and the attenuation of the longitudinal waves, {a), are measured over the ultrasonic
frequency range 0.3-5 MHz. The experimental results are compared with the predictions of [1,
2]. It is shown that the agreement with [2] is quite good; however, the agreement with [1] is not
so good at high concentration. This is not at all surprising in view of the discussion above.
Finally, the experimental results are also compared with the bounds on effective modulii of
Hashin and Shtrikman[5], Walpole[6] and Miller{7], and with the recent calculations of the
static effective elastic modulii by Chen and Acrivos[8).

2. EXPERIMENTAL PROCEDURES

A through-transmission water-immersion ultrasonic tank was used in this investigation (see
Fig. 1). The apparatus was built around a pair of accurately matched wide-band piezoelectric
ultrasonic transducers[9). Distilled water was used as the immersion liquid for the following
reasons: it has good acoustic coupling with both the transducers and the specimen; it serves as
the coolant and it is readily available. The Pulse Generator (Tektronix Type PG 501) was
triggered by the output of the Time Mark Generator (Tek. TM 184); the duration of the pulse
was varied between 10 pusec and 50 usec. This pulse was then applied to the Function
Generator (Tek. FG 502), which produced a tone-burst of the desired center frequency. The
tone-burst was amplified by the Power Amplifier (E.LN. Radio Frequency 310L) to a peak-to-
peak voltage ranging from 40 to 80 volts and then applied to the transmitting transducer. The
frequency of the tone-burst was kept close to the center frequency of the transducers. The
signal received by the receiving transducer was displayed on the Oscilloscope (Tek. 7403 with
7B53A Delay Time Base Unit and 7A13 Differential Comparator) (see Fig. 2).

In this investigation we are concerned only with the phase velocity, rather than with the
group velocity. Therefore, all measurements were made with a specific peak near the center of
the tone-burst, where the signal had reached a steady state. Furthermore, it was ensured that
the peak was at least 5-10 cycles away from both the head and the tail of the tone-burst. The
phase velocity (c,) was measured in the following manner.

With the specimen removed, let ¢, and #, be respectively the arrival times of the specific
peak when the transducers are d, and d, apart (¢ =0 is defined to be the time when the Pulse
Generator is triggered). Let ¢, be the arrival time with specimen in place and transducers d,
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Fig. 1. Schematic of the apparatus.
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Fig.2. Atypical tone-burst signal received through the composite (¢ = 0.086, n = 0.5 MHz, horizontal = § usec,
vertical = 0.2 volts).

apart; let w be the specimen thickness and Ad = d,— d, >0, then,
(e =(8)) = (ta~ )IAd + (t; = t,)] . )

It is well known that the sound velocity in water varies appreciably with temperature. This
source of error was eliminated by measuring the velocity in water in each experiment (the first
term in eqn (1) is the slowness in water). Shear waves in the composite were generated by
mode conversion: the specimen was rotated about a vertical axis until the received signal
corresponding to the shear wave exhibited an approximate maximum (the signal corresponding
to the longitudinal wave in the specimen at this incident angle was negligibly small). The angle
of incidence, i, was measured to the nearest degree and the angle of refraction, r, for the shear
waves was calculated by,

tan (r) = w sin ()/(w cos (i) - AtV,,), (9]
where V., =(dy—d))/(t,~ 1) is the velocity of sound in water and Af = ¢, t;. Finally,
(c2) = V., sin (r)/sin (i). 3

In the foregoing, we have assumed that when a plane pressure wave is obliquely incident upon
a particulate composite, the transmitted P- and S-waves are also plane.

The arrival times ¢;, 1; and £; were measured as follows. The signal applied to the transmitter
was displayed on the upper beam. The received signal was displayed on the lower beam.
However, in order to display this signal at an appropriately fast sweep, the triggering of the
lower beam was suitably delayed. The delay-time was adjusted unti] the specific peak occupied
(say) the center graticule of oscilloscope grid as viewed with an 8X magnifying glass. The
delay-time was accurately measured with the Counter/Timer (Tek. DC505) to an accuracy
of + 1 nanosec. A major advantage of this technique is that it permits online measurements of
the wave velocities; human errors could, therefore, be completely eliminated. A systematic
error analysis has been carried out in Appcndlx 2; it is shown that the velocity measurements
are accurate to within + 1%.

The attenuation measurements were made with two specimens of different thicknesses, w,
and w,. Let the corresponding amplitudes of the specific peak be A; and A,. Then, the
attenuation

{a)=In(A;/A)/(w2~ w;) nepers/mm. @

The inaccuracies in {a} range from 6% to 15% (see Appendix 2).
Specimen preparation. The specimens consisted of spheres of glass of mean radius a =
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150 pm dispersed in an epoxy matrix (TRA-CAST 3012). Ideally, an elastic material should be
used for the matrix. However, this presented insurmountable manufacturing difficuities and the
epoxy was used instead.

Although the epoxy must be viewed as a linear viscoelastic material, it was found that over
the range of frequencies used, 0.3 < n <5 MHz, both ¢, and ¢, are independent of n. Further,
a <({a), implying that in the composite, the scattering effects dominate the viscoelastic effects.
It is assumed, therefore, that it is valid to compare the results of these experiments with the
analysis of elastic—elastic composites.

A brief description of the epoxy and its curing process is given in [10]. The choice of radius
of the glass spheres[11] was governed by the following considerations.

The analyses[1-4] assume A » a, where A is any of the four wavelengths A, A,, A} and A3,
where ( ) denotes the inclusion and the subscripts ( ); and ( ), denote, respectively, the
longitudinal and the shear disturbances. For 0.3=<n <5MHz, we find 1.02< A} =<16.93 mm,
0.67=<A3;<11.16 mm, 0.51 <A, <8.47mm and 0.232 < A, <3.87 mm; thus the conditions A > a
are satisfied.

Early attempts to prepare the specimen in a single casting operation failed because of
settling of glass particles during the curing process. This difficulty was overcome by preparing
the specimen in several steps as described below. The desired cross section dimensions of the
specimens were 50X 50 mm. We started by pouring epoxy in a mold 178 x 178 mm; the
thickness of the epoxy was kept nearly equal to the mean inter-particle distance d, given in
terms of the volume fraction of the inclusions, ¢, by:

d = a(4=/3¢)"". &)

Here, d was calculated on the assumption that the inclusions are arranged in a simple cubic
structure. ¢ varied from 0.086 to 0.533 and accordingly d varied from 300 to 560 xm. When the
epoxy was roughly half-cured and hence had attained rather large viscosity, the measured
amount of glass balls was dispersed into the layer. The balls sank to the bottom but were
constrained from lateral movement by the high viscosity. This prevented clustering of the balls,
although some of it always occurred even at low volume fractions. Since a single layer was
found to be too thin for the subsequent machining operations, four layers were consecutively
cured on top of each other; the curing of the second layer was started only after the first one
had fully cured and so on. This four-lamina sheet was cut into 9 squares (50 X 50 mm). These
squares were randomly stacked, a thin film of matrix epoxy was applied to the mating surfaces,
the assemblage was subjected to an appropriate pressure and the curing cycle repeated.
Finally, the faces of the specimens were polished and lapped parallel to 25 um. The exact
volume fraction, ¢, of the machined specimen was determined by measuring independently the
densities of the specimen, the matrix and the glass spheres.

A visual examination of the composite revealed that the particles were, in fact, distributed in
a fairly random manner, although some clustering occurred even at low volume fractions. In
order to estimate the influence of this and several other minor sources of errors, the following
routine test was undertaken. Two of us independently prepared the specimens with same
concentration and made independent measurements of wave velocities. The results agreed
within the estimates of error (1%; see Appendix 2).

3. RESULTS AND DISCUSSIONS

3.1 Properties of the constituents

Several specimens with thickness ranging from about 15 mm to 50 mm were cast from the
epoxy alone. The wave velocities and the attenuation were measured over the frequency range
n=03 to SMHz. It was found that both ¢, and ¢, are independent of frequency: c;=
2.54 mm/usec and ¢, = 1.16 mm/usec. Since thicker specimens were used, these measurements
are accurate to+0.3%, compared to+1% for the composites. The attenuation a increased
linearly with n. The results of a linear regression are: a =mn + ap, where n is in MHz;
m = 0.0456 nepers/(mm-MHz), and the intercept ao=0.001 nepers/mm. The reduced data is
plotted in Figs. 9 and 10. Furthermore, several measurements were carried out with samples of
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Aluminum 6061-T6 and EPON 828-Z epoxy. The results ate compared in Table 1 with those
available in the literature, confirming our estimates of accuracy. Finally, the properties of the
constituents are given in Table 2.

3.2 Velocity measurements

Five specimens were prepared with & = 0.086, 0.164, 0.351, 0.451 and 0.533. For the lowest ¢,
d/a = 3.73, hence it may be considered a dilute suspension of inclusions. Some specimens with
even lower ¢ were prepared; however, it was found that very much thicker specimens are
needed to make accurate measurements because of very small differences between (c,) and c;
at these volume fractions. At the other end, ¢ = 0.533, d/a = 1.98. (We note for comparison that
for a close-packed simple cubic structure d/a = 2.0 and ¢ = 0.524.)

Four pairs of transducers were used in this investigation. For each pair, a center frequency
was determined experimentally, based on the criterion that the transients at the head and tail of
the tone-burst attenuate most rapidly. The center frequencies were found to be 0.4, 0.8, 2.3 and
3.5 MHz. The dimensionless longitudinal velocity (c;)/c;, measured at these frequencies, is
plotted in Figs. 3-6 as a function of é.

If Fig. 3, the experimental results at 0.4 MHz are compared with the analysis of Datta[2].
Let & = Ala, then 8] =85, 63 =56, 8, =42, §,=19; thus the long wavelength assumption of the
analysis is adequately satisfied. The comparison is considered excellent up to ¢=0.451. At
é=0.533, there is a steep rise in the experimental {c;)/c; and the discrepancy becomes
significant. This is not at all surprising, since at this volume fraction a large fraction of particles
were observed to be in direct contact—a fact not taken into account in the analysis. It is
reassuring to note that the experimental {c;) is larger than the predicted one, because
heuristically one would expect the direct contact to lend greater stiffness to the composite. This
observation may be seen to hold for all frequencies tested (Figs. 3-7). In Fig. 4, a similar

Table 1. Comparison of values obtained in this study with values obtained in other studies

This work Other work
a a
. Speclﬁc a € Nepers Specific a € Nepers
Specimen gravity mm/usec mm/usec mm gravity  mm/usec mm/usec mm
AL 6061-T6 2.700 6.38 3.09 2.693t 6.401 3.13 —
EPON-828-Z 1.202 2.64 — 0.086 1.2024 267 - 0.082%,9
tRef. [12].
$Ref. [13).
$Ref. [11].

{Measurement taken at 1 = 2.0 MHz.

Table 2. Constituent properties

Young's modulus Specific Poisson's

Material- (psi) (GPa) gravity ratio
TRA-CAST 6.25%10° 4,06 1.18 0.370
Glass 10x 10° 64.89 247 0.249
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Fig. 3. Longitudinal phase velocity vs volume fraction (8, = 42, 8, = 19, 5] = 85, 8; = 56).
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Fig. 5(a). Logitudinal phase velocity vs volume fraction  Fig. 5(b). Longitudinal phase velocity vs volume fraction
(8,=17,8,=34,8;=15, 8= 10). (6:=7,6,=34,8]=15, 6;=10).

comparison is shown for n =0.8 MHz. At low volume fractions the comparison is excellent;
however, the discrepancy increases with ¢.

In Fig. 5(a), the measurements at 2.3 MHz are compared with the bounds of Hashin and
Shtrikman([5] for a general two-phase material and with the bounds of Miller[7) for spherical
inclusions. Since Miller’s calculations are restricted to effective bulk modulus only, in order to
calculate {c,) the shear modulus bounds were taken from [5]. It is noted the bounds of [5] and
[6] are identical. The effective wave speeds corresponding to these bounds were calculated by
(c)? = (k) + 413u))/(p) and (c,)* = (u)/(p), where {p)=(1-¢)p+ép’. The experimental data
satisfy both sets of bounds[5~7]; it is, however, interesting to note that the data are very much
closer to the lower rather than to the upper bounds. This is to be expected, for as noted by
Hashin[17}:

“...intuitively, for two materials with same volume fractions and same phase modulii,
where in the first the stiffer phase is a matrix while in the second the more compliant phase is a
matrix, the actual effective modulii of the first material will be closer to the upper bound while
those of the second will be closer to the lower bound.”

For our case, the compliant phase constitutes the matrix.

The data of Fig. 5(a), at 2.3 MHz, is compared in Fig. 5(b) with the calculations of
Datta[1,2) and Chen and Acrivos[8]. At low volume fractions all three analyses predict the
experiments rather well. The analysis[1] due to Datta is claimed to be accurate only at low
concentrations; this is borne out be the experiments. The static results of Chen and Acrivos for
spherical inclusions—accurate to (¢)>—compares favorably up to moderate volume fractions as
expected. The comparison with Datta[2], which is accurate at least to (¢)%, is the most favorable
for the entire range of volume fractions: the maximum discrepancy is about 3% at ¢ =0.451.

Figure 6 is a comparison of data at 3.5 MHz with Datta[2]. Here 6; =10, §;=6, §, =5 and
8, =22, i.e. the shortest of the wavelengths, namely shear wavelength, in the matrix is almost
equal to the particle diameter. It is, therefore, very surprising to note that the analysis(2]
predicts very well the observed results. Clearly, the results of[2] are valid at least somewhat
outside the range of the underlying assumption of long wavelengths. Unfortunately, due to
anticipated poor signal-to-noise ratio resulting from increased attenuation, measurements were
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Fig. 6. Longitudinal phase velocity vs volume fraction (5, =5, 8, =22, §; =10, 5;=6).

not attempted at higher frequencies, i.e. lower wavelengths. It would be extremely interesting to
probe the regime 8;, 8,, 8;, 8,~ 1 with a view to comparing the results with [2].

The measurements of shear velocity {¢c;)/c; at | MHz are plotted in Fig. 7. Since the
excitation of shear waves in the composite involved two mode conversions, the amplitudes of
the received signals were very much lower than those for {(c)), hence measurements at
n > 1 MHz could not be made. The predictions of Datta{l, 2], the bounds due to Hashin and
Shtrikman[5] (same as the bounds of Walpole[6]) and calculations of Chen and Acrivos[8] are
also included in Fig. 7. Here, as for {c;), the analysis [1] is in good agreement at dilute
concentrations, but deviates significantly as & increases. The data satisfies the bounds of {5, 6];
it is closer to the lower bound although not nearly as close as was the case for {c;). It is also noted
that the lower bounds of [5, 6] coincide with the results of Datta [2). The calculations of Chen and
Acrivos are in good agreement only up to moderate concentrations; as ¢ increases, the discrepancy
becomes large. Finally, the results of Datta[2] compare most favorably with the experimental data
for the entire range of &; the discrepancy, however, is somewhat larger than that observed with {c,)
data.

3.3 Cut-off frequency

It is well known that periodic composites exhibit the phenomenon of cut-off frequencies
(see, e.g. Refs. [14, 15]). For longitudinal waves, the first cut-off frequency corresponds to the
condition A;=2d, where 4 is the dimension of the unit cell in the direction of wave
propagation. If the cut-off frequencies exist in random particulate composites, the first of these,
n., may be expected to satisfy the condition A;=2d, where d is the mean interparticulate
distance; for each volume fraction tested in this investigation, the n,, calculated accordingly, is
indicated in Fig. 8, where data from Figs. 3-6 has been plotted with n as the independent
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Fig. 7. Shear phase velocity vs volume fraction (5, =17, 8, =8, 8} = M4, 5;=22),
85 Vol, 16, No. 4
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Fig. 8. Longitudinal phase velocity vs frequency.

variable. Following [14, 15], e.g. one would expect a decrease in phase velocity as n approaches
n. from below and an increase from the other direction. It is evident from Fig. 8 that no sharp
changes in (¢} occur in the vicinity of the calculated n.. In fact, the only observable trend in the
data—and that, too, not very well defined—is the leftward shift of the peak as ¢ increases,
whereas the calculated n. shifts to the right. We are led to conclude, therefore, that the random
particulate composites do not exhibit the phenomenon of cut-off frequencies. (It will be shown
in the sequel that this conclusion is also supported by the attenuation measurements.)

3.4 Attenuation measurements

The attenuation (a) for ¢ =0.086 is shown in Fig. 9; the thicknesses of the specimens were
9.96 and 16.81 mm. The attenuation « for the matrix alone is also shown. Attempts were made
to measure the attenuation in glass; it was found to be negligibly small. Since (a) is not very
much larger than a, in order to determine the attenuation due to scattering alone (a;) the matrix
attenuation should be subtracted from {a): one plausible ad hoc assumption would be to
partition (a) in proportion to the volume fraction, i.e. a, ={a)— (1~ é)a.

For ¢ =0.451, () is plotted in Fig. 10; the specimen thicknesses were 4.95 and 9.55 mm. At
the higher frequencies, (a)» (1 - é)a and hence, a, ={a). It is surprising to note that a, ap-
proaches zero at about n = 1 MHz rather than at n = 0 as expected. However, in order to probe
accurately the frequency range 0-1 MHz, very much thicker specimens are needed (see
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Fig. 9. Attenuation in the composite vs frequency. Fig. 10. Attenuation in the composite vs frequency.
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Appendix 2) and these are enormously difficult to manufacture (see Section 2). The pairs of
broken lines in Fig. 9 and 10 are the error bands; the error ranges from 6 to 15% depending
upon frequency and the two thicknesses.

The attentuation data was also collected for the three remaining samples, & =0.164, 0.351
and 0.533, but has not been reported for the following reasons. & =0.533: the attenuation was
very large, therefore, for the thicker specimen signal-fo-noise ratio was considered inaccept-
able. ¢ =0.164 and 0.351: here, the reasons are alogether different. In every experiment, in
addition to the desired through-transmitted-pulse (TTP), a series of spurious twice-internally-
reflected-pulses (TIRP) are also detected. The first of these arrives at Af =2w/c; later than
TTP. The number of cycles corresponding to At is m =2wn/c,. If TTP had not reached a
steady state (Fig. 2) within m cycles from the head of the pulse, the data was considered
invalid.

The calculated cut-off frequencies, n., are also shown in Figs. 8 and 9. If cut-off frequency exists,
then one would expect the attenuation to increase very sharply as n approaches n. from either side.
Clearly, no discernible changes in {a) are found, either in the vicinity of n. or anywhere else in the
range of n tested. (In order to preserve clarity, not all the data points are plotted; however, the
frequency regime on cither side of n. was very carefully scanned with extremely small increments
in frequency and measurements similar to the ones reported were observed.) Therefore, these
measurements support our earlier conclusion that random particulate composites do not exhibit
the phenomenon of cut-off frequencies—at least in the range of frequencies and concentrations
tested.

4. CONCLUSIONS

The phase velocities of longitudinal and shear waves, (¢;) and (c;) and attenuation of
longitudinal waves, {(«), in a random particulate composite were measured in the frequency (n)
range of 0.3-5 MHz and the concentration (¢) range of 8.6-53.3%. The experimental results
were found to be in good agreement with the predictions of Datta[1] at low concentrations, with
those of Chen and Acrivos(8] up to moderate concentrations and with the results of Datta[2] up
to high concentrations. Although the analysis[2] is based on the long-wavelength assumptions,
its predictions are in good agreement with the data even when one of the wavelengths becomes
comparable to the inclusion dimension. The measured velocities (c;) and {(c,) were always larger
than those predicted by [1, 2, 8]. The experimental results satisfy the bounds due to Hashin and
Shtrikman[5] and Walpole[6] for a general two-phase material and the somewhat closer bounds
due to Miller{7] for spherical inclusions; the data are very much closer to the lower bounds.
The phenomenon of cut-off frequencies—a characteristic of peridoic composites—was not
observed in either the velocity or the attenuation curves for the random particular composites.
In fact, there is no definitive pattern to the frequency dependence of the velocity. Finally, (a)
has been reported for ¢ = 0.086 and 0.451 and 0.3 <#n <5 MHz,
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APPENDIX
In this Appendix, we reproduce the final results of Refs. [1,2,8]. Consider a random distribution of similar
ellipsoidal inclusions with the same orientation embedded in 2 homogeneous matrix. Let the principal axes of the ellipsoids

by 2a, 2b, 2¢ with @ 2 b = c. Then it was shown in Ref. [1] that for a longitudinal wave propagating paralle! to the c-axis,
the effective wave speed (c,) is given by,

(@)2= 1+ E[l - 7_'333:--]—1—’”(7_'”3,-& Tm,)]

1+&p'lp) (Ab

G
where p is the matrix density, ( ) denotes the inclusion properties, » is the Poisson's ratio of the matrix and Tz may be

found in [1]. This expression is believed to be accurate for small volume fractions (¢ < 1). A more accurate relation that is
valid at higher concentrations is derived in Ref. [2] and is given by,

((_‘C'IT))z =[1-¢{STH(1 + éTH) - TH(1 + 38*/2a%)

- (ST + TR+ SeTETONI +3¢T8)

X {(1+ ET®(1 + TR(1 +38%2a)) - ETHTY

x(1+38%2e3)). (A2)
Similar results can be derived for wave propagation along the a- and b-axes. Here 8%a? = 2(1- »)/(1-2v),

m 9(ll+_vv) -Mnm 0} = % (P'/p - l)v

1+
ﬂﬂz) 45(1 v)[Tmmu 3Tmm33]r

1.
TR~ 2% P =5 T ]

1-2
m == ‘5(‘ 2 [TSSM 3T3333 S(Tmmu TM”)]-
The constants T}y, are defined by the relation,

efy = Tiued), (A3)

where ¢i} is the applied uniform strain in the matrix at infinity and e] is the transformation strain within the equivalent
ellipsoid (see Eshelby [16)).

The corresponding results for propagation of shear waves polarized in the a-direction and propagating in the
c-direction are, from Ref. {1],

(%’)2 = {1+ &0~ 2Tyy)H(1 + Gp'lp), 4
and from Ref. {2},
L 41-2v)
o 1= 1-¢ Si=v) fm: (‘Ei )

(A5

(‘1) (1+3ET}|)[1+6:(51(1 . T.m(HSﬁ’lla’)]
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where T3l = Tl Note that ¢}y = ¢}, thus there are three shear and three longitudinal wave speeds. For the purpose of
this work, we label ¢y = (c2).
‘The above results simplify considerably for the case of spherical inclusions. In this case,
Tan=(A+2B)03, Tu=Tou=(A-B)3,
TR=(+»A1-»), TH=21-20)B/15(1- ),

) foolp Aa_Kik-L_
TH=T8=0, -Thp 28' A'&(I—k'fk)‘l*

Esﬁ%—? a=(+u)1-»),
-

8= 24~5)/15(1 - v). Here, k and p are bulk and shear modulus, respectively.
For very small concentrations & both (Al) and (A2) reduce to,

(%—:?)Z 1—5{%-” Tt 7= (Tus+ ’T'ms)]« (A8)

which is correct to (&), Similarly, eqns (A4) and (AS) reduce to,
(@)2 =1-élp'lp-1+2Tnl (AT)
4]

Thus the slopes of the curves {c,)ic; vs & and {c2)fcz vs £ at & =0 are, for the spherical inclusions,

g _(1+0A+21-20)8 B
(112)[1-—pip~—-—-~—--—3ﬂ,,) ]and(lil’)[l elp B},

respectively. For the particular materials used in these experiments, these slopes are 0.14 and 0.41 respectively.
The final results of Chen and Acrivos[8] are given next. Let (k) and (u) be, respectively, the static cffective bulk and
shear modulii, then correct to (£,

LI 4 4y - z
by +(1+3k)7.5+(z +3k)(71c)‘ﬂn+0(c’). (A8)
%lz 14 1501 = »)ya + 30(1 = 9}~ S}V Hy + O(E%), (A9)

where

v =03k = 33K’ +4u),

2= (8- D/2B(4-5»)+(7~5v)],and B = u'lp.

In Ref. ([8], Fig. 1}, the numerical results for H,, as a function of v, are given for »* = 0.25 (glass) and several values of 8
from B =0 (cavity) to B == {(rigid inclusion). For our case 8 = 17.55 and H, was determined by interpolation: H; = 1.17.
The results for Hy, on the other hand, were given only for § =0 and . Based on the -dependence of H, for the particular
»=0.37, it is believed that the value of H, for 8 = 17.55 is not significantly different from that for B = «; thus H, = 1.625.

APPENDIX 2, ERROR ANALYSIS

1. Velocity measurements
We recall eqn (1) for the longitudinal wave speed,

(e = {(t2- t)l(dy - dy) - (12— 1) w}". ®1

Let 8¢ be the random error in measuring f;, 4 or 4. The “reference” peak could be afigned with a vertical line on the
graticule with an estimated accuracy of £ 1/20 division; an 8% magnifying lens was used. The sweep rate was
200 nanosec/division or faster. Therefore, the maximum 5f = 10 nanosec. (The error of £ 1 nanosec caused by the DC50S
COUNTER/TIMER has been neglected.) The linear dimensions d;, d; and w were measured to an accurscy better
than 20,0254 mm (+10-%in.), hence 8(d;)= 3(dy) = §(w) = (say) & =+0.0254 mm. Finally, we make the conservative
mmmmmemdmmin(c.)isﬂmabsolute—n:herﬁnnmtmnsqum(RMS)-sumottiwcompomnt
errors, then,

§_{_€|2~ _2£ Iy 1, 28 Ty~ 1)
e “’"[ w oW gmayt ¥, ] ®2)

'fgyicﬂly. dy~dy =76 mm (3in), w=10mm (0.4in.), L~ !, =51 usec and £, £, = 3 usec, therefore {8{c,}{c\) = 0.01 or
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2. Attenuation measurements
We recall eqn (4) for attenuation,
{@)=In(@l(w:- wy); q=AA, (B3)
Let 5A be the random error in measuring A, or A,. Typically, 64 = 1/10 divisions, A; and A; = 2 divisions, w,~ w; =5 mm
and &/ = 0.0254 mm, therefore,
S(a){a) =26A/(A In g) + 26wl(w: = wy). (B4)

For the “worst” case, ¢ = 2.1 and 8{(a)/(a) = 0.15; for the “best™ case, ¢ = 7.2 and §(a)/(a) = 0.06.



